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A modal control approach is applied to control the vibration of homogeneous
and laminated plates. The controller is designed using the linear optimal control
theory. The performance of the controller designed according to a structural model
of the plant based on the classical plate theory is evaluated and compared with that
derived in the context of a higher order plate theory. It is found that the use of the
classical plate model in the design of vibration control systems could lead to
erroneous conclusions concerning the performance of the actual controlled system.
The strong in#uence played by transverse shear deformation and lamination on the
controlled system is clearly demonstrated and pertinent conclusions are outlined.
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1. INTRODUCTION

Suppression of vibration via feedback control constitutes a topic of high practical
importance in the design of the structural systems of advanced technology of
today and tomorrow. Since the vibration of structural components can
jeopardize their operational precision and precipitate their failure by fatigue, one
should "nd appropriate ways to inhibit the oscillatory motion or at least to con"ne
it.

Active control is an e!ective method to reach such a goal. The increasing interest
in the application of such a methodology is certainly due to higher precision and/or
stability requirements of many #exible structural systems in current times and the
degree of maturity of existing feedback control approaches. For a list of references
emphasizing the e!orts and achievements in this area, the reader is referred to the
monograph [1].

However, in spite of the tremendous work done so for in this area, few studies
have been devoted to an assessment of the implications of transverse shear
#exibility on vibration control of structures made from advanced composite
0022}460X/99/490731#30 $30.00/0 ( 1999 Academic Press
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materials. In this paper, we intend to illustrate the importance of this e!ect on the
control of homogeneous as well as laminated plates. However, before going further
into the study of this problem, we should refer to the works [2, 3], where
a mathematical treatment of the active control of thin plates was developed, as well
as papers [4}6], where various problems related with the active control of #at
plates have been presented.

As has been conclusively shown [7}9], the classical lamination theory based
upon the adoption of the Kirchho! hypothesis proves to be inadequate in
many important instances. This is especially true whenever the constituent
materials feature large #exibility in transverse shear and/or when the structure does
not ful"ll the thinness requirement imposed by the adoption of the Kirchho!
hypothesis. In such cases, in order to get reliable response predictions, re"ned
structural models incorporating transverse shear and higher order e!ects have to
be used.

In order to illustrate the limits of the applicability of the Kirchho!ean plate
model on the design of the controller, the results obtained will be compared with
the ones obtained in the context of a higher order plate theory developed in
references [7, 8]. The latter model incorporates a number of non-classical
structural e!ects such as transverse shear and normal stress, and ful"lls the
traction-free boundary conditions on the external bounding planes of the plate. In
the context of the classical plate model, these e!ects are ignored.

Comparisons of the closed-loop response predictions obtained in the context of
the two structural models will provide a measure of the in#uence of the modelling
errors induced by the neglect of the above-mentioned non-classical e!ects. For the
sake of the completeness, two modal control methodologies, namely the
independent modal-space control (IMSC) and coupled modal-space control (CMC)
[1, 10], are used for the purpose of controlling the vibration of laminated plates.
The feedback control law is designed by using the linear optimal control theory
[11]. As regards the performance index chosen to be minimized, it consists of an
integral of the sum of the weighted vibration and control energies.

2. GOVERNING EQUATIONS

Consider the case of plates symmetrically laminated of 2m#1 laminae of
uniform thickness. The mid-plane p of the central layer (which coincides with the
mid-plane of the entire laminate) is referred to an orthogonal system of co-
ordinates (x, y), the z-axis being normal to p. One assumes that the materials of the
constituent layers feature transversely isotropic properties, the plane of isotropy in
each material layer being parallel at each point to the mid-plane of the structure.
The selection of this material for the present analysis is motivated by the following
facts: (i) due to its special thermo-mechanical characteristics this material (known
as pyrolitic graphite) is likely to become an excellent candidate for use in structural
space applications, and (ii) it enables one to emphasize in a convenient and general
way, via parametric studies, the implications on vibration control of transverse
shear #exibility characteristics.
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In light of the higher order theory (HOT) developed in reference [8], the
displacement "eld associated with the bending problem assumes the form

<a (x, y, z, t)"zba (x, y, t)#z3ta (x, y, t), a"1, 2, (1a)

<
3
(x, y, z, t)"w(x, y, t). (1b)

In equations (1), <a and <
3

denote, respectively, the tangential and transverse
displacement components of the 3-D medium of the plate, ba(,ba (x, y, t)) and
ta (,ta (x, y, t)) are 2-D displacement measures (see e.g. reference [8]) while
t denotes the time. Following the developments carried out in references [7, 8], in
the absence of rotatory inertia e!ects the equations governing the transverse
bending motion can be expressed in a decoupled form in terms of the transverse
de#ection w(x, y, t) and a transverse shear potential function U(,U(x, y, t)) as

D(w
,xxxx

#2w
,xxyy

#w
,yyyy

)!p#H
1
(p

,xx
#p

,yy
)#M

0
w
, tt
!K(w

,xxtt
#w

,yytt
)

![(m
1,y

#m
2,x

)!H
2
(m

1,xxy
#m

1,yyy
#m

2,xxx
#m

2,xyy
)]"0

(2a)

and

U!

C
S

(U
,xx

#U
,yy

)"0. (2b)

In these equations the comma denotes the partial di!erentiation with respect to the
indicated variables. Also p denotes the transverse load intensity, m

1
and m

2
represent the external moment intensities with their axes being parallel to the x-axis
and y-axis, respectively, while the expressions of the mass and rigidity quantities
appearing in these equations are displayed in Appendix B.

In the case of single-layered transversely isotropic plates, equations (2) can be
modi"ed as
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In spite of the fact that the governing equations shown above are uncoupled, the
boundary value problem remains coupled through the three boundaries at each
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prescribed edge of the plate. In these equations as well as in the sti!ness quantities
given in Appendix B, E, G(,E/[2(1#k)]), k and E@, G@, k@ denote the Young's
modulus, shear modulus and the Poisson ratio associated with the plane of isotropy
and with the planes normal to the plane of isotropy respectively.

In order to incorporate the e!ect of constant edge loads, it can readily be shown
that this can formally be done by replacing p(,p(x, y, t)) by p#¹

x
w
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y
w
,yy

,
where ¹

x
and ¹

y
denote the in-plane edge loads parallel to the x- and y-axis,

respectively, considered positive in tension.
Upon de"ning dimensionless quantities indicated by an overbar whose

de"nitions are listed in Appendix C, the dimensionless counterparts of governing
equations (2) become
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For the sake of simpli"cation, henceforth the overbars associated with the dimen-
sionless quantities are removed. Next, as a prerequisite to the study of the control
problem, the eigensolutions and the dynamic response of the uncontrolled systems
consisting of a simply supported laminated plate subjected to external loads, are
addressed.

3. FREQUENCY AND DYNAMIC RESPONSE
OF THE UNCONTROLLED SYSTEM

The study concerns rectangular (l
1
]l

2
) plates simply supported all around the

contour. As was shown in reference [12], for simply supported panels the solution
of equation (4b) representing the boundary layer e!ect is zero-valued and the
expression of w that satis"es the simply supported boundary conditions can be
expressed as
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In addition, l
R
(,l

2
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) denotes the plate aspect ratio, ¹

R
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edge load ratio while a
m
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Upon including the proportional viscous-type damping e!ect, the modal
equations associated with equation (4a) can be shown to reduce to
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denote the generalized mass and the normalized eigenfunctions respectively.

4. CONTROL SYSTEM DESIGN

Active control of #exible structures is typically implemented to control a few
known elastic modes. A linear state feedback regulator and a state observer (or
Kalman}Bucy "lter) are usually designed to control the desired modes of vibration.
Higher modes referred to as residual modes are generally ignored in the analysis.
However, they may be excited by the controller and fed through the observer to
cause a new destabilizing e!ect on the system. This is referred to as the spillover
phenomenon, which, as was shown by Balas [13], constitutes a major issue in the
control of large space structures.

However, in the present study the spillover problem will not be addressed.
Instead, our attention will be directed towards the assessment of the modelling
errors on the response of the structure that is actively controlled. The modelling
errors considered here are those due to the di!erence between the nominal and the
actual plants. In this work, the nominal plant is assumed to coincide with the
structural model based upon the Kirchho! theory, while the actual plant is that
based on the structural model which in contrast to the previously mentioned one,
does not ignore transverse shear and higher order e!ects. The basic aim of this
study consists, therefore, in an assessment of the adequacy of the classical model of
the laminated #at structures for control system design as well as, in the clari"cation
of the e!ects, on controlled responses, of a number of important structural
parameters.
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Suppose that in addition to an external disturbance force intensity p(x, y, t),
a control force distribution, p

c
(x, y, t), and two control moment distributions,

m
c1

(x, y, t) and m
c2

(x, y, t), are also applied to the plate. In the case of the existence
of M

1
concentrated control forces and of M

2
and M

3
concentrated control

moments with their applied axes parallel to the x- and y-axis, respectively, the
control force and moment distributions assume the form
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where d ( ) denotes the Dirac generalized function, aJ
i
are the amplitudes of control

forces, while mJ
1j

and mJ
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are the amplitudes of control moments.
In light of equation (9), letting p

c
, m
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and m
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be in place of p, m

1
and m

2
in

equation (8a), the expression of the modal control inputs can be found to be
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Hence, the modal equations of plate including the control inputs can be expressed
as
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4.1. MODAL CONTROL FORMULATIONS

Two modal active control methodologies are implemented referred to as coupled
modal control (CMC) and independent modal-space control (IMSC) [10]. Within
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the CMC approach the "rst r]s controlled modal equations are written in
state-space form as
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in which O and I denote the zero and identity matrices, diagM N represents
the diagonal matrix. Then, by selecting an appropriate control theory, a control law
is designed where the feedback input vector z is expressed in terms of the state
vector u

N
.

Within the IMSC, and in contrast to the CMC, one is able to design a controller
for each mode to be controlled independently. One of the advantages of using the
IMSC method is that the numerical work of designing the controller is less involved
than in the CMC approach. The feedback gain generally can be obtained in closed
form. This implies that less computation time is required and real-time
implementation of the control algorithm is possible even for a system of relatively
high order. In this approach, modal control inputs instead of physical control
inputs are being designed. The actual control inputs are obtained in terms of modal
control inputs by solving a set of simultaneously linear algebraic equations. The
solution is exact if the number of control actuators is the same as the number of
modes being controlled. The performance of the control system certainly will
degrade if the number of the control actuators is less than the number of the modes
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that one wants to control. In this study, the number of actuators and controlled
modes is assumed to be the same.

Using the IMSC approach, every controlled modal equation is expressed in
state-variable form as
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and f
dij

and f
cij

are given by equations (8) and (10) respectively. Although the
uncontrolled modal equations, equations (7), are not coupled, their controlled
counterparts, equations (11), may become coupled when the feedback control law is
used as would be the case for CMC. However, from equations (13) one can see that
controlled modal equations become uncoupled if one selects the modal feedback
control, f

cij
, to be a function depending only on its associated modal state v

ij
, i.e.,

f
cij
"f

cij
(v
ij
). As a result, the controlled modal equations become uncoupled and the

controller can be designed for each mode to be controlled independently.
Moreover, due to the fact that the order of the controlled modal equation is low,
one can design the controller in an easier way. Once the modal control inputs are
obtained, the physical control inputs can be determined from equations (10).

4.2. LINEAR OPTIMAL REGULATOR

In the context of the present approaches the optimal control theory is adopted to
design the control law and full states feedback is assumed. Since the purpose of the
control of the structure here is to suppress its vibration, one may formulate the
whole problem as a linear quadratic regulator with desired "nal states of system
taken to be zero. In the following, the derivation of the optimal control law for
a system subjected to external excitation loads is described.

For ease of illustration, without loss of generality, the state equations irrespective
of the CMC or the IMSC approach, for the moment, will be assumed to be
represented by

u5 (t)"Au(t)#Bz(t)#f
d
(t). (14)

The cost function (also known as the performance index) J, which is to be
minimized, associated with the linear regulator problem is often chosen to have the
following quadratic form:
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where t
0

and t
f

denote the initial and terminal time (both are assumed "xed) of the
intended controlling period respectively. The S and Q represented the weighting
matrices of terminal states and states respectively, and are constant, symmetric and
non-negative de"nite. Matrix R denotes the weighting matrix of control inputs,
and is constant, symmetric and positive de"nite. It is also assumed that the states
and control inputs are not bounded and the terminal states are free. The optimal
control inputs that minimize the cost given by equation (15) can be determined as
follows:

First, de"ne an augmented cost function that includes the state equations,
equations (14), as constraints as
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c

are the costates (also known as Lagrange's multipliers). The necessary
conditions for the minimization of J

a
(and hence of J) can be found by setting the

"rst variation of equation (16) to zero. This yields
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Equations (17a}c) can be written in matrix form as
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Denote W to be the transition matrix of the above system and let it be partitioned
according to the dimensions of u and I

c
as follows:
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The solution of the system described by equation (19) then can be expressed for
given terminal states as
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If taking into account of the terminal condition given by equation (18b), the
costates I

c
can be obtained from the above equations as

I
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(t)"K (t)u(t)#d (t), (22a)
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In view of equation (22a), the optimal control inputs z determined from equation
(17b) can be expressed as

z (t)"z
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Here z
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and z
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represent the closed-loop and open-loop control inputs,
respectively, and

z
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(t)"!R~1BTK(t)u(t), (24a)

z
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The K (t) and d (t) in equations (24) remain to be determined. They can be shown
to satisfy respectively the following equations:

K0 (t)"!Q!ATK(t)!K(t)A#K(t)BR~1BTK(t) (25a)

d0 (t)"!(AT!K (t)BR~1BT)d (t)!K (t)f
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with the terminal conditions given by

K(t
f
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f
)"0. (25c}d)

If the external disturbance force is known exactly, one may solve equations (25)
backwards in time to obtain the desired open-loop feedforward and closed-loop
feedback time-varying variables, d(t) and K (t). However, if the nature of the external
force is unknown or the force is applied to the structure unexpectedly and for a very
short period of time, the above control approach may not work successfully. In
such a case, one may consider using control inputs that only consist of the feedback
term, i.e., z

cc
. By this method, the control inputs are not dependent upon the

disturbance force, and still help reducing large peaks of vibration that may occur
during the forcing period. After the disturbing force disappears, the vibration that
remains can surely be eliminated very e!ectively by this feedback control action. In
this paper, the latter control problem is investigated.

The control law can further be simpli"ed by letting t
f

approach in"nity and
S"0. It was shown by Kalman that under these conditions K(t) approaches
a constant matrix K

c
if the system is controllable and A, B, R and Q matrices are
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constant [11]. The matrix K
c
is determined from the following algebraic Riccati

equation:
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The steady state linear optimal control inputs are then given by
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and the cost function J described by equation (15) reduces to (letting t
0
"0)

J"
1
2 P

=

0

(uTQu#zTRz) dt. (28)

In view of equation (27), the system equation (14), can be put into the following
form:
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The dynamic responses of the controlled system can be obtained by solving the
above equation.

It is worth mentioning here that although the condition t
f
PR is used to obtain

K
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, in practice, the control objective can generally be achieved within a "nite period

of time. This is so because, for a preselected "nite terminal time t
f
, matrix K(t)

obtained from equation (25a) will not vary with time until t approaches the
neighborhood of t

f
(see reference [11]). Hence, by a proper design of control inputs

(through selections of weighting matrices in the Riccati equation), desired control
results can be obtained much earlier than the selected t

f
. It may, therefore, be

justi"able to use the constant K
c
instead of the time-varying K (t) when there is no

strict constraint being imposed on the terminal time t
f
.

Above some optimal control formulations relevant to vibration control
problems studied here are derived. Next, the introduction of the control inputs
described by equation (27) into the systems based on the CMC and IMSC
formulations will be discussed separately in the following:

For CMC Formulation, we de"ne a cost kernel C
T

as

C
T
"1

2
(uT

N
Qu

N
#zTR

c
z), (30a)

where

Q"C
K

1
0

0
K

2
D , K

1
"diagMq

w11
X2

11
,2, q

wrs
X2

rs
N,

K
2
"diagMq

w11
,2, q

wrs
N. (30b}d)

When the state weighting matrix Q is chosen as that given by equations (30b}d),
the "rst term in equation (30a) represents a sum of the weighted vibration energy of
each mode to be controlled. According to equations (28) and (30a), the cost function
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J can be expressed as

J"
1
2 P

=

0

C
T

dt. (31)

A suitable K
c
can be obtained by properly choosing the weighting matrices Q and

R
c

and solving an algebraic Riccati equation. The dynamical response of the
optimally controlled system can then be found by solving the following equation:

u5
N
"A*

N
u
N
#f

d
, (32a)

where A*
N

is the closed-loop system matrix and

A*
N
"A

N
!B

N
R~1

c
BT

N
K

c
(32b)

To obtain the solution of equations (32), the following integral formula of the linear
system theory is used:

u
N
(t)"MeDtM~1u

N
(0)#P

t

0

MeD(t~q)M~1f
d
(q) dq. (33)

Here M represents the transformation matrix whose columns are the right
eigenvectors of A*

N
and

D"diagMj
1
, j

2
,2, j

N
], (34)

where j
i
are the eigenvalues of A*

N
, which are closed-loop poles. The expression of

D implies that all the eigenvalues of A*
N

are distinct, which is assumed here. Let us
partition matrices M and M~1as

M"[m
1
, m

2
,2, m

N
], M~1"[n

1
, n

2
,2, n

N
]T (35a, b)

and denote
m

r
nT
r
"S

Rr
#iS

Ir
, j

r
"!g

r
#ic

r
. (36a, b)

Here i(,J!1) denotes the imaginary unit. In view of equations (33}36), u
N

can
also be expressed as

u
N
(t)"

N
+
r/1
Ge~grt (S

Rr
cos c

r
t!S

Ir
sin c

r
t)u

N
(0)

#S
RrP

t

0

e~gr (t~q)cos c
r
(t!q)f

d
(q) dq

!S
Ir P

t

0

e~gr (t~q)sin c
r
(t!q)f

d
(q) dqH. (37)
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In contrast to that of the CMC formulation, the cost kernel C
T

based on the
IMSC formulation is de"ned as

C
T
"1

2
(uT

N
Qu

N
#fTR

I
f ) (38a)

or

C
T
"

1
2

r
+
i/1

s
+
j/1

(vT
ij
Q

ij
v
ij
#r

wij
f
cij

), (38b)

where
R

I
"diagMr

w11
,2, r

wrs
N, f

c
"[ f

c11
,2, f

crs
]T,

Q
ij
"q

wijC
X

ij
0

0
1D. (38c}e)

The cost function J is determined from equation (31), which in view of equation
(38b) can be written as

J"
r
+
i/1

s
+
j/1

J
ij
, (39a)

where

J
ij
"

1
2 P

=

0

(vT
ij
Q

ij
v
ij
#r

wij
f
cij

) dt. (39b)

Since f
cij

is a function of only its own state v
ij
, all J

ij
are independent. As a result,

when J in equation (37a) is minimized, each J
ij

should also be a minimum, and vice
versa. Hence, using the IMSC approach, the control problem becomes "nding an
optimal modal control input f

cij
for each system given in equations (13) such that

every modal cost function J
ij

given by equation (39b) is minimized. Because of the
lower order of the systems (all are of second order), the solution of the algebraic
Riccatti equation as well as the closed-loop poles can be obtained in closed form.
The detail of these developments can be found in the references [1, 10].

After the optimal modal control inputs f
c
are designed, in view of equations (11)

the physical control inputs z can be determined by f
c
"B*

n
z where B*

n
"

[B
n1

B
n2

B
n3

] in which

B
nk
"

b(k)
111

2 b
11Mk

F } F

b(k)
rs1

2 b(k)
rsMk

, k"1, 2, 3. (40)

The z found using the above relation are exact if the matrix B*
n

is square and
non-singular. In other cases, a generalized inverse of B*

n
may be used.

It was shown in reference [10] that if the number of actuators and controlled
modes are the same and if R

c
"B*T

n
R

I
B*

n
, the cost kernels C

T
(and hence the cost

functions J ) obtained using the CMC and IMSC approaches are identical. These



Figure 1. Cross-section of a symmetric laminated plate.
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results are also used toward veri"cation of the computer programs developed for
the present analysis.

5. NUMERICAL ILLUSTRATIONS AND DISCUSSION OF RESULTS

The numerical illustrations are performed in the context of single and
symmetrical three-layered #at panels.

For the three-layered panels (or laminates), the central layer is twice as thick as
the outer face layers, implying the h

(1)
/h (,h

(3)
/h)"0)5 and h

(2)
/h"0)25 (See

Figure 1). Due to symmetry, the face layers are identical in their geometrical and
material properties. Two types of three-layered panels, labelled as Laminates A and
B, for the purpose of illustration are studied in this paper. They are de"ned as

¸aminate A:

E
(1)

/G@
(1)

(,E
(3)

/G@
(3)

)"10, E
(2)

/G@
(2)
"50, E

(1)
/E@

(1)
(,E

(3)
/E@

(3)
)"5,

E
(2)

/E@
(2)
"5, E

(1)
/E

(2)
"0)2.

¸aminate B:

E
(1)

/G@
(1)

(,E
(3)

/G@
(3)

)"50, E
(2)

/G@
(2)
"10, E

(1)
/E@

(1)
(,E

(3)
/E@

(3)
)"5,

E
(2)

/E@
(2)
"5, E

(1)
/E

(2)
"5.

For simplicity, it is assumed that in both instances Poisson ratios and mass
density of all layers are the same. In the numerical examples, k

(i)
"k@

(i)
"0)25 are

considered.
The data characterizing Laminates A and B reveal that in the case of the former

laminate, the face layers feature lower transverse shear #exibility than the core
layer, (situation which is common to sandwich-type structures), whereas in the
latter case, the opposite feature becomes apparent. The origin of the co-ordinates of
the reference plane is chosen at the left corner of the rectangular plate. The plate is
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assumed to be subjected to a harmonic concentrated load travelling at constant
speed l along the straight line, y"y

0
, parallel to the x-axis. Under these conditions

p assumes the form

p(x, y, t)"G
p
0
d (x!lt)d (y!y

0
)cosut

0,
0)lt)1,
lt*1.

(41)

For the de"nition of the dimensionless quantities of the travelling load, see
Appendix C. In the displayed numerical illustrations the transverse de#ection of the
center of the plate is represented and the co-ordinate y

0
is chosen to be 0)5. The time

history of the de#ection response is divided into two parts. The time interval with
the moving load indicates the forced vibration, while the other indicates the free
vibration as the moving load has already left the plate.

In numerical examples, there are totally nine vibration modes (m, n"1, 2, 3)
used in the controller design as well as in simulation, and the weighting parameters
q
wrs

are taken to be 1 and the same value of r
wrs

(,r
w
) are used for all the controlled

modes.
There are two groups of actuators being considered in this paper. Among them,

two types of torque actuators need to be di!erentiated. They are torque actuators
that produce moments about an axis parallel to the x-axis and to the y-axis
respectively. For ease of reference, they will be referred to as torque-I and torque-II
actuators. Two groups of actuators selected are located at

Group 1:

Force actuators (0)5, 0)5), (0)35, 0)75), (0)65, 0)25),

Torque-I actuators (0)5, 0)1), (0)7, 0)9), (0)3, 0)2),

Torque-II actuators (0)1, 0)5), (0)9, 0)3), (0)2, 0)7).

Group 2:

Force actuators (0)5, 0)5), (0)35, 0)75), (0)65, 0)25),

Torque-I actuators (0)25, 0)25), (0)5, 0)8), (0)75, 0)25),

Torque-II actuators (0)2, 0)5), (0)8, 0)25), (0)8, 0)75).

Note that the numbers inside the parentheses are the dimensionless x and y
representing the locations of the actuators.

In order to illustrate the signi"cance of the plate theories adopted here, in
Figure 2 there are compared the uncontrolled de#ections predicted by HOT, FOT
and CT of a plate of moderate thickness (l

1
/h"10). It is found that the results

obtained from HOT and FOT are quite close, but CT greatly underestimates the
de#ection. It is worth mentioning here that for the case of single-layered plates, the
contribution of higher order terms, which are considered in HOT, is equivalent to
the incorporation of the shear correction factor of 5/6 in the FOT.



Figure 2. Uncontrolled dimensionless transverse de#ections of a plate predicted by various plate
models. l

1
/h"10, l

R
"0)75, l6 "0)02, ¹M

1
"¹M

2
"0, m"0)005, u6 "0)25, (a) HOT (E/G@"50,

E/E@"5) & FOT (E/G@"50, k2"5/6), (b) CT.
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In Figure 3, controlled versus uncontrolled de#ections of a plate using actuators
of group 1 are shown. It is found that when the plate is modelled by CT, the
controlled de#ection of the plate during the forcing period (i.e., the travelling force
is still acting on the plate) is greatly underestimated. This is evident when one
compares the above controlled de#ection with those of the plate with the actual
plant modelled by either HOT or FOT. In Figure 4, the e!ect of E/G@ ratio (which
represents a degree of transverse shear rigidity) on the "rst force actuator of group
1 is shown. As the ratio increases, the deviation of the magnitude of the actuator's
output from CT counterpart also increases. In Figure 5, the in#uence of E/G@ ratios
on the cost kernel C

T
(which constitutes a measure of the vibration energy of

structure and actuator's expenditure) is illustrated. In Figure 6, the in#uence of
initial stresses on the controlled plate's de#ection is demonstrated. It is shown that
if the compressive in-plane stresses are present in the plate and are not taken into
account in the controller's design, the controlled system will degrade further its
performance.

From Figures 7}14, the uncontrolled and controlled dynamic responses of
laminates A and B with the thickness ratio, l

1
/h, being 20 and 10 are studied. The

uncontrolled de#ections of laminates are compared in Figures 7 and 8. The results
show that the de#ection obtained from CT (which is the same for Laminates A and
B) is much lower than those of HOT. Furthermore, one "nds that the vibration
amplitudes of laminates are still large even after the load has moved away from
plate, and remain so for a long period time as the structural damping is light. In



Figure 3. Controlled and uncontrolled dimensionless transverse de#ections of a plate predicted by
various plate models. CMC and IMSC, R

c
"r

w
B*T
n

B*
n
, r

w
"10, q

w
"1, nominal plant: CT. In the

remaining all the input data and convention are common to the ones in Figure (2). (a) Uncontrolled
(HOT), (b) actual plant: HOT, (c) actual plants: FOT, (d) actual plants: CT.

Figure 4. Outputs of a force actuator on control of plates with di!erent E/G@ ratios. CMC and
IMSC, R

c
"r

w
B*T
n

B*
n
, r

w
"10, q

w
"1, nominal plant: CT, actual plant: HOT. In the remaining all the

input data and convention are common to the ones in Figure 2.
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Figure 5. Cost kernels for control of plates featuring di!erent E/G@. Others see Figure 4.

Figure 6. Controlled dimensionless transverse de#ections of initially stressed plates. CMC and
IMSC, R

c
"r

w
B*T
n

B*
n
, r

w
"10, q

w
"1, ¹M

2
"0, nominal plant: CT, ¹M

1
"0. In the remaining all the

input data and convention are common to the ones in Figure 2. Actual plant is (a) HOT, ¹M
1
"!8,

(b) HOT, ¹M
1
"0, (c) HOT, ¹M

1
"10, (d) CT, ¹M

1
"0.
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Figure 7. Uncontrolled dimensionless transverse de#ections of laminates. l
1
/h"20, l

R
"0)75,

l6 "0)02, ¹M
1
"¹M

2
"0, m"0)005, u6 "0)25, (a) laminate B, HOT, (b) laminate A, HOT, (c) laminates

A and B, CT.

Figure 8. Uncontrolled dimensionless transverse de#ections of laminates. l
1
/h"10; others, see

Figure 7.
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Figure 9. Controlled dimensionless transverse de#ections of laminates. l
1
/h"20, l

R
"0)75,

l6 "0)02, ¹M
1
"¹M

2
"0, m"0)005, u6 "0)25, CMC and IMSC, R

c
"r

w
B*T
n

B*
n
, r

w
"10, q

w
"1,

nominal plant: CT, actual plant is (a) laminate B, HOT, (b) laminate A, HOT, (c) laminates A and B,
CT.

Figure 10. Controlled dimensionless transverse de#ections of laminates. l
1
/h"10; others, see

Figure 9.
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Figure 11. Comparison of the outputs of a force actuator on control of laminates A and B.
l
1
/h"20; others, see Figure 9.

Figure 12. Comparison of the outputs of a force actuator on control of laminates A and B.
l
1
/h"10; others, see Figure 9.
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Figure 13. Cost kernels for control of laminates A and B. l
1
/h"20; others, see Figure 9.

Figure 14. Cost kernels for control of laminates A and B. l
1
/h"10; others, see Figure 9.
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Figures 9 and 10, the controlled de#ections predicted by HOT and CT for
laminates A and B are shown. For l

1
/h"20 case, as shown in Figure 9, the

di!erence of the controlled de#ections between laminates A and B, as well as
between CT and HOT is less conspicuous. However, for thicker plates, the
di!erence becomes noticeable as shown in Figure 10. The outputs of the "rst force
actuator of the group 1 for the controlled systems in Figures 9 and 10 are shown in
Figures 11 and 12 respectively. A large di!erence between the amplitudes of the
actuator's output obtained from CT and HOT for the case of thicker laminate is
found. This gives us a warning that when the plate modelled in the context of CT is
used to design controller, one might face the possibility of the saturation of the
actuators. If this happens, the controlled system's performance will certainly
degrade further.

In Figures 13 and 14, the in#uence of the l
1
/h ratios on the cost kernels of

laminates A and B is demonstrated. It reveals that larger cost kernels are required
in the case of thicker panels and of laminated structures featuring larger transverse
shear #exibility in the face layers, than in the core layer. Moreover, the results
already obtained namely the underestimation of the cost kernel by the nominal
plant, appears also in this case, and is shown to be even exacerbated for moderately
thick panels.

Next, a second set of actuators (group 2) is chosen to control the plate described
in Figure 2, and the results are given in Figures 15}17. In Figure 15 it is found that
if a controller is designed based on a plate model of CT (which is used as the
nominal plant) and is used to control a plate model of either FOT or HOT
(simulated as the actual plant), the controlled systems become unstable. However, if
both actual and nominal plants are modelled by CT, it is found that the response
remains bounded (i.e., the controlled system is stable). For the purpose of
comparison, the case with both nominal and actual plants simulated by plate model
of HOT is also given. As is expected, in this case the controlled system is stable.

The results shown in Figure 15 apply to both IMSC and CMC approaches
because the weighting matrix for control inputs of the form R

c
"B*T

n
R

I
B*

n
is used

in the above example (see reference [10]). The natural frequencies of the plate and
the closed-loop poles of the unstable controlled system are listed in Table 1 for
reference.

It is evident from the results of the examples given above that the occurrence of
unstable controlled systems in Figure 15 could be caused by the interplay of the
following factors. The "rst factor is the modelling error. Here, it is due to the
di!erence between the CT plate model being used in the design of the controller and
the actual plant (here it is modelled using either HOT or FOT) to which the
controller actually applies. The second one is the locations of actuators, which may
be improperly chosen in contrast with those of the actuators of group 1. The third is
the weighting matrix R

c
selected in the design of the controller. It depends on the

structural properties of the plate and therefore will be a!ected by the plate model
being used. The in#uence of the last factor is illustrated in the following examples.

In Figure 16, the control input weighting matrix used in Figure 15 is changed
into R

c
"r

w
I, where r

w
"0)001. Hence, the weighting matrices being used now are

all independent of structural properties. The nominal plant is still modelled by CT,



Figure 15. Controlled and uncontrolled dimensionless transverse de#ections of a plate predicted by
various plate models. CMC and IMSC, R

c
"r

w
B*T
n

B*
n
, r

w
"10, q

w
"1, 9 actuators (group 2). In the

remaining all the input data and convention are common to the ones in Figures 2. (a) uncontrolled
(HOT), (b) nominal plant: CT, actual plant: HOT & FOT, (c) nominal and actual plants: CT,
(d) nominal and actual plants: HOT.

TABLE 1

Closed-loop poles of the unstable actively controlled plates

Mode Natural Closed-loop poles
number frequency nominal plant : CT
(m, n) (HOT) actual plant: HOT

(1, 1) 0)5052 !0)4049$0)3331
(1, 2) 1)009 !0)2266$0)9982
(1, 3) 1)539 !0)02855$1)499
(2, 1) 0)8205 !0)08814$0)8329
(2, 2) 1)212 0)3636$1)289
(2, 3) 1)682 !0)05727$1)683
(3, 1) 1)191 !0)1497$1)224
(3, 2) 1)494 !0)08281$1)495
(3, 3) 1)897 !0)2007$1)973

754 M.-Y. CHANG AND L. LIBRESCU
while other conditions remain the same as those in Figure 15. As a result, the
controlled responses now are all bounded. This indicates that the weighting matrix
does play an important role of causing some controlled systems in Figure 15 to
become unstable. In Figures 17 and 18, respectively, the in#uences of the control



Figure 16. Controlled and uncontrolled dimensionless transverse de#ections of a plate predicted by
various plate models. CMC, R

c
"r

w
I, r

w
"0)001, q

w
"1. In the remaining all the input data and

convention are common to the ones in Figures 2. Nominal plant: CT, (a) uncontrolled (HOT),
(b) actual plant: HOT, (c) actual plant: CT.
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input weighting parameter r
w

and the E/G@ ratios on the closed-loop poles of the
unstable system, where the actual plant is modelled using HOT in Figure 15, are
illustrated. It is found that as r

w
decreases (which amounts to larger control inputs

are exerted) or E/G@ ratio increases, one pair of unstable closed-loop poles appears
and is driven further into the right-half plane. Hence for plates with large E/G@ ratio,
care should be taken not to adopt the vibration controller designed based on the
plate model of CT. In Figure 18, the ninth pair of closed-loop poles is omitted for
the sake of clarity.

6. CONCLUSIONS

A formulation for vibration control of composite laminated plates using the
modal control approach is developed in this paper. Two di!erent plate models
based on the classical and a higher order plate theory are used to evaluate the
in#uence of structural modelling e!ects on the e!ectiveness of the active control. By
comparing the controlled response of the plate modelled by these two theories, the
inadvertent predictions provided by the classical plate model on the vibration
controller design were clearly indicated. As shown in numerical examples, the true
controlled responses, cost kernels and actuators' outputs provided by a theory
incorporating the non-classical structural e!ects can be inadvertently
underestimated by using the control system based on the classical structural model.



Figure 17. Variations of closed-loop poles of the unstable controlled system with control input
weighting parameter, r

w
. Actual plant: HOT, others, see Figure 15. d r

w
"10; s. r

w
"50; n5 r

w
"100;

) r
w
"1000.

Figure 18. Variations of the closed-loop poles of the unstable controlled systems with E/G@ ratios.
d E/G@"50; s E/G@"20; ) E/G@"10; m E/G@"5; M E/G@"0.
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Sometimes this could even lead to instability of the controlled system. Moreover,
the results also reveal that when the classical plate theory is used to model the plant,
the controlled response characteristics are indi+erent to any variation of transverse
shear #exibility featured by the material of the plant.

This implies that in order to achieve a reliable active control of structural systems
constructed of advanced composite materials, transverse shear #exibility featured
by the actual constituent materials has to be necessarily incorporated in the
structural model.
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APPENDIX: NOMENCLATURE

aJ
i

amplitudes of control forces
A

N
, A, A

ij
system matrices

A*
N

closed-loop system matrix
B
N
, B, b

c
input matrices

C
T

cost kernel
diagM N the diagonal matrix
E
(r)

, E@
(r)

Young's moduli of the rth layer associated with the isotropy plane and the
planes normal to the isotropy plane respectively
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f
dij

, f
cij

modal external and control forces respectively
f
d

external modal force vector
G

(r)
, G@

(r)
shear moduli of the rth layer associated with the isotropy plane and the
planes normal to the isotropy plane respectively

h total thickness of the plate
J cost function
l
1
, l

2
dimensions of rectangular plate in the x- and y-axis directions respectively

l
R
(,l

2
/l

1
) plate aspect ratio

M transformation matrix whose columns consists of the eigenvectors of A*
Nm

1
, m

2
external moment intensities with their applied axes parallel to the x-axis and
y-axis respectively

mJ
1j

, mJ
2j

amplitudes of control moments
N

ij
generalized masses

p, p
c

external transverse load intensity and control force
p
0
, l, u the amplitude, constant moving speed and frequency of the travelling

oscillating force
q
ij
, qR

ij
modal co-ordinates (or generalized co-ordinates) and modal velocities

q
wij

state weighting parameters
Q, Q

ij
weighting matrices for states

r
wij

(,r
w
) control input weighting parameters

R, R
c
, R

I
weighting matrices for control inputs

S weighting matrix for terminal state vector u(t
f
)

t
0
, t

f
initial and terminal time of the intended controlling period

¹
x
, ¹

y
the in-plane edge loads applied parallel to the x- and y-axis, respectively
(positive in tension)

¹
R
(,¹

2
/¹

1
) tensile edge load ratio

u
N
, u, v

ij
state vectors consist of modal co-ordinates and modal velocities

w transverse plate displacement
z control input vector consists of aJ

i
, mJ

1j
, mJ

2jba rotations of the deformed normal
d
A

tracer identifying the transverse normal stress (i.e. p
zz
) e!ect

U transverse shear potential function
/
ij

normalized eigenfunctions
m
ij

damping ratios
j
i

eigenvalues of A*
Nk

(r)
, k@

(r)
the Poisson ratios of the rth layer associated with the isotropy plane and the
planes normal to the isotropy plane respectively

o
(r)

mass density of the rth layer
X

ij
eigenfrequencies (i.e., natural frequencies)

ta higher order in-plane displacement functions accounting for deformation of
the originally #at cross-section

APPENDIX B

Mass and rigidity coe.cients:
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APPENDIX C

Dimensionless parameters:
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